-(2x^2)+1=-3

Simple and best practice solution for -(2x^2)+1=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(2x^2)+1=-3 equation:



-(2x^2)+1=-3
We move all terms to the left:
-(2x^2)+1-(-3)=0
We add all the numbers together, and all the variables
-2x^2+4=0
a = -2; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-2)·4
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*-2}=\frac{0-4\sqrt{2}}{-4} =-\frac{4\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*-2}=\frac{0+4\sqrt{2}}{-4} =\frac{4\sqrt{2}}{-4} =\frac{\sqrt{2}}{-1} $

See similar equations:

| 51=4u-9 | | 13+5m=53 | | x^2+7x-13.5=0 | | 8b+5=-1+6b | | (5z+4)^2+4=0 | | -2x+6x-7=4(x-2)-5 | | -4(a+2-1=-5a | | 32/b=4 | | -3/4(x)=18 | | 14=g/10+11 | | 19=y/5+11 | | 3/4(x)=18 | | -8.8x(-4.75)=35.2 | | -26d=-4+8 | | -6(v+3)+4v+7=7v+10 | | 8=64/g | | 17-(x+5)=7x-4 | | w-12=80 | | 2y−35+11/10=4y+5/10 | | 5x^+4x-1=0 | | 6-3c=-15 | | 4x-90=540 | | 4(4+20)=1/5(20r+400) | | x^2+7x=-38 | | h+0.15h=h | | -17+53=-4(x+3) | | 3(2x+6)=-42+36 | | 24/x-4=8/x | | 3(4x-8)-7(7-4x)+3(-5x+5)=-4(7-6x) | | 3(2x+6)=-42+36x= | | 8x-3x+6+3x=x-6+12 | | -8(v+3)+4v+5=6v+9 |

Equations solver categories